Abstract

We consider a nonlocal problem for the first-order differential equation with unbounded operator coefficient in a Banach space and a nonlinear integral nonlocal condition. We propose an exponentially convergent method for the numerical solution of this problem and justified this method under the assumptions that the indicated operator coefficient A is sectorial and that certain conditions for the existence and uniqueness of the solution are satisfied. This method is based on the reduction of the posed problem to an abstract Hammerstein-type equation, discretization of this equation by the method of collocation, and its subsequent solution by the method of simple iterations. Each iteration of the method is based on the Sinc-quadrature approximation of the exponential operator function represented by the Dunford–Cauchy integral over the hyperbola enveloping the spectrum of A. The integral part of the nonlocal condition is approximated by using the Clenshaw–Curtis quadrature formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.