Abstract

AbstractWe consider the initial‐value problem for a one‐dimensional wave equation with coefficients that are positive, constant outside of an interval, and have bounded variation (BV). Under the assumption of compact support of the initial data, we prove that the local energy decays exponentially fast in time, and provide the explicit constant to which the solution converges. The key ingredient of the proof is a high‐frequency resolvent estimate for an associated Helmholtz operator with a BV potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.