Abstract

Taking into account the infinite distributed delays and reaction-diffusions, this article investigates the global exponential synchronization problem of a class of memristor-based competitive neural networks (MCNNs) with different time scales. Based on the Lyapunov-Krasovskii functional and inequality approach, an adaptive control approach is proposed to ensure the exponential synchronization of the addressed drive-response networks. The closed-loop system is a discontinuous and delayed partial differential system in a cascade form, involving the spatial diffusion, the infinite distributed delays, the parametric adaptive law, the state-dependent switching parameters, and the variable structure controllers. By combining the theories of nonsmooth analysis, partial differential equation (PDE) and adaptive control, we present a new analytical method for rigorously deriving the synchronization of the states of the complex system. The derived m-norm (m ≥ 2)-based synchronization criteria are easily verified and the theoretical results are easily extended to memristor-based neural networks (NNs) without different time scales and reaction-diffusions. Finally, numerical simulations are presented to verify the effectiveness of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.