Abstract
This paper concerns the problem of global exponential synchronization for a class of memristor-based Cohen-Grossberg neural networks with time-varying discrete delays and unbounded distributed delays. The drive-response set is discussed. A novel controller is designed such that the response (slave) system can be controlled to synchronize with the drive (master) system. Through a nonlinear transformation, we get an alternative system from the considered memristor-based Cohen-Grossberg neural networks. By investigating the global exponential synchronization of the alternative system, we obtain the corresponding synchronization criteria of the considered memristor-based Cohen-Grossberg neural networks. Moreover, the conditions established in this paper are easy to be verified and improve the conditions derived in most of existing papers concerning stability and synchronization for memristor-based neural networks. Numerical simulations are given to show the effectiveness of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.