Abstract

This paper investigates the mean-square exponential synchronization problem of complex dynamical networks with Markovian jumping and randomly occurring parameter uncertainties. The considered Markovian transition rates are assumed to be partially unknown. The parameter uncertainties are considered to be random occurrence and norm-bounded, and the randomly occurring parameter uncertainties obey certain Bernoulli-distributed white noise sequences. Based on the Lyapunov method and stochastic analysis, by designing mode-dependent feedback controller, some sufficient conditions are presented to ensure the mean-square exponential synchronization of Markovian jumping complex dynamical networks with partly unknown transition rates and randomly occurring parameter uncertainties. Numerical examples are given to demonstrate the validity of the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call