Abstract

Abstract Considering the fact that the exponential synchronization of neural networks has been widely used in theoretical research and practical application of many scientific fields, and there are a few researches about the exponential synchronization of fractional-order memristor-based neural networks (FMNN). This paper concentrates on the FMNN with time-varying delays and investigates its exponential synchronization. A simple linear error feedback controller is applied to compel the response system to synchronize with the drive system. Combining the theories of differential inclusions and set valued maps, a new sufficient condition concerning exponential synchronization is obtained based on comparison principle rather than the traditional Lyapunov theory. The obtained results extend exponential synchronization of integer-order system to fractional-order memristor-based neural networks with time-varying delays. Finally, some numerical examples are used to demonstrate the effectiveness and correctness of the main results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.