Abstract

This paper focuses on the dynamical behavior for a class of memristor-based bidirectional associative memory neural networks (BAMNNs) with additive time-varying delays in discrete-time case. The necessity of the proposed problem is to design a proper state estimator such that the dynamics of the corresponding estimation error is exponentially stable with a prescribed decay rate. By constructing an appropriate Lyapunov-Krasovskii functional (LKF) and utilizing Cauchy-Schwartz-based summation inequality, the delay-dependent sufficient conditions for the existence of the desired estimator are derived in the absence of uncertainties which are further extended to available uncertain parameters of the prescribed memristor-based BAMNNs in terms of linear matrix inequalities (LMIs). By solving the proposed LMI conditions the estimation gain matrices are obtained. Finally, two numerical examples are presented to illustrate the effectiveness of the proposed results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call