Abstract

This paper considers a sliding mode control (SMC) of singular systems. The systems under consideration involve nonlinear perturbations and time-varying delays. The aim of this paper is to design a sliding mode controller such that the nonlinear singular system is exponentially stable and its trajectory can be driven onto the sliding surface in finite time. By using the Lyapunov–Krasovskii functional and some specified matrices, conditions on exponential stabilization are obtained in the form of strict linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed main results. All these results are expected to be of use in the study of singular time-varying delay systems with nonlinear perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.