Abstract

We consider the problem of controlling a linear system when the state is available with a known time-varying delay (delayed-state feedback control) or the actuator is affected by a delay. The solution proposed in this paper consists in partially assigning the spectrum of the closed-loop system to guarantee the exponential zero-state stability with a prescribed decay rate by means of a finite-dimensional control law. A non conservative bound on the maximum allowed delay for the prescribed decay rate is presented, which holds for both cases of constant and time-varying delays. An advantage over recent and similar approaches is that differentiability or continuity of the delay function is not required. We compare the performance of our approach, in terms of delay bound and input signal, with another recent approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call