Abstract
In this paper, we study the boundary stabilizing feedback control problem of Rayleigh beams that have non-homogeneous spatial parameters. We show that no matter how non-homogeneous the Rayleigh beam is, as long as it has positive mass density, stiffness and mass moment of inertia, it can always be exponentially stabilized when the control parameters are properly chosen. The main steps are a detail asymptotic analysis of the spectrum of the system and the proving of that the generalized eigenfunctions of the feedback control system form a Riesz basis in the state Hilbert space. As a by-product, a conjecture in Guo (J. Optim. Theory Appl. 112(3) (2002) 529) is answered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.