Abstract

This paper is concerned with the <em>exponential</em> stability of traveling fronts in monostable reaction-advection-diffusion equations with nonlocal delay. The existence and comparison theorem of solutions of the corresponding Cauchy problem in a weighted Sobolev space are first established for the systems on $\mathbb{R}$ by appealing to the theory of semigroup and abstract functional differential equations. The exponential stability of traveling fronts is then proved by the comparison principle and the (technical) weighted energy method. Comparing with the previous results, our results recovers and/or improves a number of existing ones. Finally, we apply our results to some biological and epidemic models and obtain some new results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.