Abstract

The exponential stability of trivial solution and numerical solution for neutral stochastic functional differential equations (NSFDEs) with jumps is considered. The stability includes the almost sure exponential stability and the mean-square exponential stability. New conditions for jumps are proposed by means of the Borel measurable function to ensure stability. It is shown that if the drift coefficient satisfies the linear growth condition, the Euler-Maruyama method can reproduce the corresponding exponential stability of the trivial solution. A numerical example is constructed to illustrate our theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.