Abstract

<abstract><p>Stochastic complex networks with multi-weights which were driven by Brownian motion were widely investigated by many researchers. However, Brownian motion is not suitable for the modeling of engineering issues by reason of its variance, which is infinite at any time. So, in this paper, a novel kind of stochastic complex network with multi-weights driven by second-order process is developed. To disclose how the weights and second-order process affect the dynamical properties of stochastic complex networks with multi-weights driven by the second-order process, we discuss exponential stability of the system. Two types of sufficient criteria are provided to ascertain exponential stability of the system on the basis of Kirchhoff's matrix tree theorem and the Lyapunov method. Finally, some numerical examples are given to verify the correctness and validity of our results.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.