Abstract
The paper considers the problems of global exponential stability for impulsive high-order neural networks with time-varying delays. By employing the Hardy inequality and the Lyapunov functional method, we present some new criteria ensuring exponential stability. The activation functions are not assumed to be differentiable or strictly increasing, and no assumption on the symmetry of the connection matrices is necessary. These criteria are important in signal processing and the design of networks. Moreover, we also extend the previously known results. One illustrative example is also given in the end of this paper to show the effectiveness of our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.