Abstract

Convergence characteristics of continuous-time cellular neural networks with discrete delays are studied. By using Lyapunov functionals, we obtain delay independent sufficient conditions for the networks to converge exponentially toward the equilibria associated with the constant input sources. Halanay-type inequalities are employed to obtain sufficient conditions for the networks to be globally exponentially stable. It is shown that the estimates obtained from the Halanay-type inequalities improve the estimates obtained from the Lyapunov methods. Discrete-time analogues of the continuous-time cellular neural networks are formulated and studied. It is shown that the convergence characteristics of the continuous-time systems are preserved by the discrete-time analogues without any restriction imposed on the uniform discretization step size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.