Abstract

A small-gain approach is presented for analyzing exponential stability of a class of (dynamical) hybrid systems. The systems considered in the paper are composed of finite-dimensional dynamics, represented by a linear ordinary differential equation (ODE), and infinite-dimensional dynamics described by a parabolic partial differential equation (PDE). Exponential stability is established under conditions involving the maximum allowable sampling period (MASP). This new stability result is shown to be useful in the design of sampled-output exponentially convergent observers for linear systems that are described by an ODE–PDE cascade. The new stability result also proves to be useful in designing practical approximate observers involving no PDEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.