Abstract
A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrene solution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model is capable of explaining all trends seen in the data, and suggests a novel analysis of the data. This analysis demonstrates that exponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparable instantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively by stress measurements taken during inception of steady shear. Information taken from the model about chain stretching suggests that normal stress measurements are strong indications of stretching, whereas shear stress measurements are indicative of both chain stretching and segment orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.