Abstract

In this paper, we study quantum Ordered Binary Decision Diagrams(\(\mathrm {OBDD}\)) model; it is a restricted version of read-once quantum branching programs, with respect to “width” complexity. It is known that the maximal gap between deterministic and quantum complexities is exponential. But there are few examples of functions with such a gap. We present a new technique (“reordering”) for proving lower bounds and upper bounds for OBDD with an arbitrary order of input variables if we have similar bounds for the natural order. Using this transformation, we construct a total function \(\mathrm {REQ}\) such that the deterministic \(\mathrm {OBDD}\) complexity of it is at least \(2^{\varOmega (n / \log n)}\), and the quantum \(\mathrm {OBDD}\) complexity of it is at most \(O(n^2/\log n)\). It is the biggest known gap for explicit functions not representable by \(\mathrm {OBDD}\)s of a linear width. Another function(shifted equality function) allows us to obtain a gap \(2^{\varOmega (n)}\) vs \(O(n^2)\). Moreover, we prove the bounded error quantum and probabilistic \(\mathrm {OBDD}\) width hierarchies for complexity classes of Boolean functions. Additionally, using “reordering” method we extend a hierarchy for read-k-times Ordered Binary Decision Diagrams (\({\textit{k}}\text {-}\mathrm {OBDD}\)) of polynomial width, for \(k = o(n / \log ^3 n)\). We prove a similar hierarchy for bounded error probabilistic \({\textit{k}}\text {-}\mathrm {OBDD}\)s of polynomial, superpolynomial and subexponential width. The extended abstract of this work was presented on International Computer Science Symposium in Russia, CSR 2017, Kazan, Russia, June 8 – 12, 2017 Khadiev and Khadieva (2017)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.