Abstract
This note studies the linearly damped generalized Hartree equation iu˙−(−Δ)su+iau=±|u|p−2(Jγ∗|u|p)u,0<s<1,a>0,p≥2. Indeed, one proves an exponential scattering of the energy global solutions, with spherically symmetric datum. This means that, for large time, the solution goes exponentially to the solution of the associated free problem iu˙−(−Δ)su+iau=0, in Hs norm. The radial assumption avoids a loss of regularity in Strichartz estimates. The exponential scattering, which means that v:=eatu scatters in Hs, is proved in the energy sub-critical defocusing regime and in the mass-sub-critical focusing regime. This result is presented because of the gap due to the lack of scattering in the mass sub-critical regime, which seems not to be well understood. In this manuscript, one needs to overcome three technical difficulties which are mixed together: the first one is a fractional Laplace operator, the second one is a Choquard (non-local) source term, including the Hartree-type term when p=2 and the last one is a damping term iau. In a work in progress, the authors investigate the exponential scattering of global solutions to the above Schrödinger problem, with different kind of damping terms.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.