Abstract
In light of the crucial role of collaborative R&D in advancing technology within the new energy vehicle industry, this study seeks to explore ways to overcome the barriers to technological innovation by establishing an effective collaborative innovation network. Utilizing joint patent-authorized data from China’s new energy vehicles between 2005 and 2019, the collaborative innovation network was developed, and the Exponential Random Graph Model (ERGM) was employed to analyze its formation and evolution mechanisms. The results indicate that the network has undergone significant expansion, closely linked to strong national policy support and the active involvement of innovation participants. The network exhibits effects of expansion, transfer, and closure. External attribute analysis revealed the Matthew effect and geographical compatibility effect and found that organizational compatibility tends to foster complementary cooperation. The findings offer insights into optimizing collaborative innovation networks in the NEVs industry and suggest strategies for policymakers and industry players to promote collaborative innovation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.