Abstract
The time-dependent Schrödinger Equation (TDSE) is a parabolic partial differential equation (PDE) comparable to a diffusion equation but with imaginary time. Due to its first order time derivative, exponential integrators or propagators are natural methods to describe evolution in time of the TDSE, both for time-independent and time-dependent potentials. Two splitting methods based on Fer and/or Magnus expansions allow for developing unitary factorizations of exponentials with different accuracies in the time step △t. The unitary factorization of exponentials to high order accuracy depends on commutators of kinetic energy operators with potentials. Fourth-order accuracy propagators can involve negative or complex time steps, or real time steps only but with gradients of potentials, i.e. forces. Extending the propagators of TDSE's to imaginary time allows to also apply these methods to classical many-body dynamics, and quantum statistical mechanics of molecular systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Theoretical and Computational Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.