Abstract
We study monotone skew-product semiflows generated by families of nonautonomous neutral functional differential equations with infinite delay and stable D-operator, when the exponential ordering is considered. Under adequate hypotheses of stability for the order on bounded sets, we show that the omega-limit sets are copies of the base to explain the long-term behavior of the trajectories. The application to the study of the amount of material within the compartments of a neutral compartmental system with infinite delay shows the improvement with respect to the standard ordering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.