Abstract

The yeast mutant rad54-3 is temperature conditional for the rejoining of DNA double-strand breaks, but cells do proliferate at both the restrictive and permissive temperatures. Thus, after irradiation with 30 MeV electrons, survival curves can be obtained which may or may not involve double-strand break rejoining under certain experimental conditions. Because of this special property of rad54-3 cells, it was possible to demonstrate that rejoining of radiation-induced double-strand breaks under nongrowth conditions yields exponential survival curves the slopes of which decrease as a function of the rejoining time. These survival data suggest that, under nongrowth conditions, the rejoining of double-strand breaks is an unsaturated process and lacks binary misrepair. In contrast, whenever rejoining of double-strand breaks occurs under growth conditions, shouldered survival curves are observed. This is true for immediate plating as well as for delayed plating survival curves. It is proposed that it is the unsaturated rejoining of double-strand breaks under nongrowth conditions, lacking binary misrepair, which is responsible for potentially lethal damage repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call