Abstract
This paper considers asymptotically hyperbolic manifolds with a finite boundary intersecting the usual infinite boundary, cornered asymptotically hyperbolic manifolds, and proves a theorem of Cartan–Hadamard-type near infinity for the normal exponential map on the finite boundary. As a main application, a normal form for such manifolds at the corner is then constructed, analogous to the normal form for usual asymptotically hyperbolic manifolds and suited to studying geometry at the corner. The normal form is at the same time a submanifold normal form near the finite boundary and an asymptotically hyperbolic normal form near the infinite boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.