Abstract

This work is concerned with a system of nonlinear viscoelastic wave equations with nonlinear damping and source terms acting in both equations. We will prove that the energy associated to the system is unbounded. In fact, it will be proved that the energy will grow up as an exponential function as time goes to infinity, provided that the initial data are large enough. The key ingredient in the proof is a method used in Vitillaro (Arch Ration Mech Anal 149:155–182, 1999) and developed in Said-Houari (Diff Integr Equ 23(1–2):79–92, 2010) for a system of wave equations, with necessary modification imposed by the nature of our problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.