Abstract
Due to its high programmability and storage, DNA circuits have been widely used in biological computing. In this paper, the addition, subtraction, multiplication, division, n-order and 1/n-order gates are built through DNA strand displacement reactions. The chemical reaction networks of the exponential function are established by using the six DNA analog computation gates. The integrated DNA strand displacement circuits are built through the chemical reaction networks. The exponential function polynomials can be computed through the integrated DNA strand displacement circuits. Finally, through visual DSD software verification, this design can realise the computation of exponential function polynomials, which provides a reference for solving exponential function equations and neural network computations in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.