Abstract
In this paper, we propose a new probabilistic model of heterogeneously attributed multi-dimensional arrays. The model can manage heterogeneity by employing individual exponential family distributions for each attribute of the tensor array. Entries of the tensor are connected by latent variables and share information across the different attributes through the latent variables. The assumption of heterogeneity makes a Bayesian inference intractable, and we cast the EM algorithm approximated by the Laplace method and Gaussian process. We also extended the proposal algorithm for online learning. We apply our method to missing-values prediction and anomaly detection problems and show that our method outperforms conventional approaches that do not consider heterogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.