Abstract
We show that any element of the special linear group $SL_2(R)$ is a product of two exponentials if the ring $R$ is either the ring of holomorphic functions on an open Riemann surface or the disc algebra. This is sharp: one exponential factor is not enough since the exponential map corresponding to $SL_2(\mathbb{C})$ is not surjective. Our result extends to the linear group $GL_2(R)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.