Abstract
We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains D ⊂ ℝd, d = 2, 3. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in D, comprising the countably-normed spaces of I. M. Babuska and B. Q. Guo.As intermediate result, we prove that continuous, piecewise polynomial high order (“p-version”) finite elements with elementwise polynomial degree p ∈ ℕ on arbitrary, regular, simplicial partitions of polyhedral domains D ⊂ ℝd, d ⩾ 2, can be exactly emulated by neural networks combining ReLU and ReLU2 activations.On shape-regular, simplicial partitions of polytopal domains D, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the hp finite element space of I. M. Babuška and B. Q. Guo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.