Abstract

AbstractWe prove estimates at infinity of convolutions and densities of the corresponding compound Poisson measures for a class of radial decreasing densities on , , which are not convolution equivalent. Existing methods and tools are limited to the situation in which the convolution is comparable to initial density at infinity. We propose a new approach, which allows one to break this barrier. We focus on densities, which are products of exponential functions and smaller order terms—they are common in applications. In the case when the smaller order term is polynomial, estimates are given in terms of the generalized Bessel function. Our results can be seen as the first attempt to understand the intricate asymptotic properties of the compound Poisson and more general infinitely divisible measures constructed for such densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.