Abstract

The spatial decay properties of Wannier functions and related quantities have been investigated using analytical and numerical methods. We find that the form of the decay is a power law times an exponential, with a particular power-law exponent that is universal for each kind of quantity. In one dimension we find an exponent of -3/4 for Wannier functions, -1/2 for the density matrix and for energy matrix elements, and -1/2 or -3/2 for different constructions of nonorthonormal Wannier-like functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.