Abstract

We study initial-boundary value problems for the 3D Navier–Stokes equations posed on bounded and unbounded parallelepipeds as well as on bounded and unbounded smooth domains without smallness restrictions for the initial data. Under conditions on sizes of domains, we establish the existence, uniqueness and exponential decay of solutions in $$H^2$$ -norm for bounded domains as well as “smoothing” effect and in $$H^1$$ -norm for unbounded ones. Moreover, for smooth subdomains of unbounded domains, we prove regularity of strong solutions and “smoothing” effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.