Abstract

In this article, we establish the local and global exponential convergence of a primal-dual dynamics (PDD) for solving equality-constrained optimization problems without strong convexity and full row rank assumption on the equality constraint matrix. Under the metric subregularity of Karush-Kuhn-Tucker (KKT) mapping, we prove the local exponential convergence of the dynamics. Moreover, we establish the global exponential convergence of the dynamics in an invariant subspace under a technically designed condition which is weaker than strong convexity. As an application, the obtained theoretical results are used to show the exponential convergence of several existing state-of-the-art primal-dual algorithms for solving distributed optimization without strong convexity. Finally, we provide some experiments to demonstrate the effectiveness of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.