Abstract

Abstract Let G be a connected amenable locally compact group with left Haar measure λ. In an earlier work Jenkins claimed that exponential boundedness of G is equivalent to each of the following conditions: (a) every open subsemigroup S ⊆ G is amenable; (b) given and a compact K ⊆ G with nonempty interior there exists an integer n such that (c) given a signed measure of compact support and nonnegative nonzero f ∈ L ∞(G), the condition v * f ≥ 0 implies v(G) ≥ 0. However, Jenkins‚ proof of this equivalence is not complete. We give a complete proof. The crucial part of the argument relies on the following two results: (1) an open σ-compact subsemigroup S ⊆ G is amenable if and only if there exists an absolutely continuous probability measure μ on S such that lim for every s ∈ S; (2) G is exponentially bounded if and only if for every nonempty open subset U ⊆ G.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.