Abstract
AbstractIn this paper, exponential basis functions (EBFs) are used in a boundary collocation style to solve engineering problems whose governing partial differential equations (PDEs) are of constant coefficient type. Complex‐valued exponents are considered for the EBFs. Two‐dimensional elasto‐static and time harmonic elasto‐dynamic problems are chosen in this paper. The solution procedure begins with first finding a set of appropriate EBFs and then considering the solution as a summation of such EBFs with unknown coefficients. The unknown coefficients are determined by the satisfaction of the boundary conditions through a collocation method with the aid of a consistent and complex discrete transformation technique. The basis and various forms of the transformation have been addressed and discussed. We shall propose several strategies for selection of EBFs with the aid of the basis explained for the transformation. While using the transformation, the number of EBFs should not necessarily be equal to (or less than) the number of boundary information data. A library of EBFs has also been presented for further use. The effect of body forces is included in the solution via construction of particular solution by the use of the discrete transformation and another series of EBFs. A number of sample problems are solved to demonstrate the capabilities of the method. It has been shown that the time harmonic problems with high wave number can be solved without much effort. The method, categorized in meshless methods, can be applied to many other problems in engineering mechanics and general physics since EBFs can easily be found for almost all problems with constant coefficient PDEs. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.