Abstract
We construct an asymptotic representation for the solution plane. The particular equation that we study is chosen in part to highlight the complexities that arise in high-order examples, resulting in particular from the non-existence of a suitable (steady-state) heteroclinic connection. Key points of this calculation are the identification, location and evolution of the active (in the sense that non-zero, though exponentially-small, terms are switched on across them) Stokes lines, and of the higher-order Stokes lines across which these can be activated or inactivated. In doing so, we need in particular to analyse two ‘levels’ of higher-order Stokes lines and to present the associated mechanisms by which they can themselves be activated or inactivated. By piecing together the information concerning which Stokes lines (both ordinary and higher-order) are active, we are able to deduce systematically which of the competing exponentials that can potentially arise within the asymptotic solution are actually present in each region of the complex plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.