Abstract

We continue to focus on simple exponential approximations for steady-state tail probabilities in queues based on asymptotics. For the G/GI/1 model with i.i.d. service times that are independent of an arbitrary stationary arrival process, we relate the asymptotics for the steady-state waiting time, sojourn time, and workload. We show that the three asymptotic decay rates coincide and that the three asymptotic constants are simply related. We evaluate the exponential approximations based on the exact asymptotic parameters and their approximations by making comparisons with exact numerical results for BMAP/G/1 queues, which have batch Markovian arrival processes. Numerical examples show that the exponential approximations for the tail probabilities are remarkably accurate at the 90th percentile and beyond. Thus, these exponential approximations appear very promising for applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.