Abstract

We investigate a kinetic model of a system in contact with several thermal reservoirs at different temperatures $T_\alpha$. Our system is a spatially uniform dilute gas whose internal dynamics is described by the non-linear Boltzmann equation with Maxwellian collisions. Similarly, the interaction with reservoir $\alpha$ is represented by a Markovian process that has the Maxwellian $M_{T_\alpha}$ as its stationary state. We prove existence and uniqueness of a non-equilibrium steady state (NESS) and show exponential convergence to this NESS in a metric on probability measures introduced into the study of Maxwellian collisions by Gabetta, Toscani and Wennberg (GTW). This shows that the GTW distance between the current velocity distribution to the steady-state velocity distribution is a Lyapunov functional for the system. We also derive expressions for the entropy production in the system plus the reservoirs which is always positive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.