Abstract

An infrared spectroscopy based explosives detection system using a quantum cascade laser (QCL) as excitation source was used to record mid infrared spectral signals of highly energetic materials (HEM) deposited on real world substrates such as travel baggage, cardboard and wood. The HEMs used were nitroaromatic military explosive trinitrotoluene (TNT), aliphatic nitrate ester pentaerythritol tetranitrate (PETN) and aliphatic nitramine hexahydrotrinitrotriazine (RDX). Various deposition methods including sample smearing, spin coating, spray deposition and partial immersion were evaluated for preparing samples and standards used as part of the study. Chemometrics statistical routines such as principal component analysis (PCA) regression with various preprocessing steps were applied to the recorded infrared spectra of explosives deposited as trace contaminants on target substrates. The results show that the dispersive infrared vibrational technique investigated using QCL is useful for detection of HEMs in the types of substrates studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.