Abstract

Explosive torque has been demonstrated to relate to static balance. However, sports injuries occur dynamically and unpredictably, yet the relationship between explosive torque and balance response to dynamic perturbations is unknown. This study investigated the relationship between explosive torque of the plantar flexors and knee extensors and the centre of mass (COM) response to unexpected perturbations. Thirty-three healthy subjects (17 females, 16 males) were assessed for maximal and explosive isometric knee extension (KE) and plantar flexion (PF) torque and COM response (velocity (COMV), displacement (COMD)) to unexpected platform translations. Relationships between explosive torque and balance measures were investigated using Pearson’s correlation and multiple regression. A negative relationship between PF explosive torque at 50, 100, and 150 ms and COMV at 300, 400, and 500 ms (r = −0.363 to −0.508, p ≤ 0.049), and COMD at 400 and 500 ms (r = −0.349 to −0.416, p ≤ 0.046) was revealed. A negative relationship between KE explosive torque at 50, 100, and 150 ms and COMV at 400 ms (r = −0.381 to −0.411, p ≤ 0.029) but not COMD was also revealed. Multiple regression found PF 100 ms predicted 17.3% of variability in COMD at 500 ms and 25.8% of variability in COMV at 400 ms. These results suggest that producing torque rapidly may improve COM response to unexpected perturbation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.