Abstract

Organic field effect transistors based on poly(3-hexylthiophene) and CuII tetraphenylporphyrin composite were investigated as sensors for detection of vapors of nitrobased explosive compounds, viz., 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), and dinitrobenzene, which are also strong oxidizing agents. Significant changes, suitable for sensor response, were observed in transistor “on” current (Ion) and conductance (S) after exposure. A similar device response was, however, not observed for oxidizing agents such as benzoquinone and benzophenone. The Fourier transform infrared spectrometry experiments supported the results, where exposure to RDX and TNT vapors resulted in a significant shift in IR peaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call