Abstract
Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units. The study of explosive synchronization transition attracts considerable attention. Here, I report the explosive transition within the framework of a mobile network, while each oscillator is controlled by global-order parameters of the system. Using numerical simulation, I find that the explosive synchronization (ES) transition behavior can be controlled by simply adjusting the fraction of controlled oscillators. The influences of some parameters on explosive synchronization are studied. Moreover, due to the presence of the positive feedback mechanism, I prevent the occurrence of the synchronization of continuousphase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.