Abstract

We have investigated a series of branched fluorescent sensing compounds with thiophene units in the arms and triphenylamine centers for the detection of nitrated model compounds for 2,4,6-trinitrotoluene (TNT) and the plastic explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). Stern−Volmer measurements in solution show that the fluorescence is more efficiently quenched by nitroaromatic compounds when compared to a non-nitrated quencher, benzophenone. Simple modification of the structure of the sensing compound was found to result in significant changes to the sensitivity and selectivity toward the nitrated analytes. A key result from time-resolved fluorescent measurements showed that the chromophore−analyte interaction was primarily a collisional process. This process is in contrast to conjugated polymers where static quenching dominates, a difference that could offer a potentially more powerful detection mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.