Abstract
Explosive hydrogen burning in type I X-ray bursts (XRBs) is driven by charged particle reactions creating isotopes with masses up to -->A ~ 100. Since charged particle reactions in a stellar environment are very temperature sensitive, we use a realistic time-dependent general relativistic and self-consistent model of type I X-ray bursts to provide accurate values of the burst temperatures and densities. This allows a detailed and accurate time-dependent identification of the reaction flow from the surface layers through the convective region and the ignition region to the neutron star ocean. Using this, we determine the relative importance of specific nuclear reactions in the X-ray burst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.