Abstract

This study experimentally examined the explosive fragmentation of thin ceramic tubes using pulsed power. A thin ceramic tube was threaded on a thin copper wire, and high voltage was applied to the wire using a pulsed power generator. This melted the wire and the resulting vapor put pressure on the ceramic tube, causing it to fragment. We examined the statistical properties of the fragment mass distribution. The cumulative fragment mass distribution obeyed the double exponential or power law with exponential decay. Both distributions agreed well with the experimental data. Finally, we obtained universal scaling for fragmentation, which is applicable to both impact and explosive fragmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.