Abstract

.We study the dynamics of condensation in a misanthrope process with nonlinear jump rates and factorized stationary states. For large enough density, it is known that such models have a phase separated state, with a non-zero fraction of the total mass concentrating in a single lattice site. It has been established in (Waclaw and Evans 2012 Phys. Rev. Lett. 108 070601) for asymmetric dynamics that such processes exhibit explosive condensation, where the time to reach the stationary state vanishes with increasing system size. This constitutes a spatially extended version of instantaneous gelation which has previously been studied only in mean-field coagulation models. We show that this phenomenon also occurs for symmetric dynamics in one dimension if the non-linearity is strong enough, and we find a coarsening regime where the time to stationarity diverges with the system size for weak non-linearity. In higher space dimensions explosive condensation is expected to be generic for all parameter values. Our results are based on heuristic mean field arguments which are confirmed by simulation data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.