Abstract
We use the astrophysical hydrocode ZEUS to compute high-resolution models of the disruption and deceleration of cometary fragments striking Jupiter. We find that simple analytic and semianalytic models work well for kilometer-size impactors. We show that previous numerical models that placed the explosion much deeper in the atmosphere failed to fully resolve important gasdynamical instabilities. These instabilities tear the comet apart, greatly increase its effective cross section, and bring it to an abrupt halt. A 1 km diameter fragment loses over 90% of its kinetic energy within a single scale height at an atmospheric pressure of order 10 bars. For all practical purposes, it explodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.