Abstract

Millions of people worldwide deal with issues concerning fertility. Reduced fertility, or even infertility, may be due to many different causes, including genetic disorders, of which chromosomal abnormalities are the most common. Fluorescence in situ hybridization (FISH) is a well-known and frequently used method to detect chromosomal aberrations in humans. FISH is mainly used for the analysis of chromosomal abnormalities in the spermatozoa of males with numerical or structural chromosomal aberrations. Furthermore, this technique is also frequently applied in females to detect X chromosomal aberrations that are known to cause ovarian dysgenesis. However, information on the X chromosomal content of ovarian cells from females with X chromosomal aberrations in lymphocytes and/or buccal cells is still lacking. The aim of this study is to advance basic research regarding X chromosomal aberrations in females, by presenting two methods based on FISH to identify the X chromosomal content of ovarian cells. First, a method is described to determine the X chromosomal content of isolated ovarian cells (oocytes, granulosa cells, and stromal cells) in non-grafted ovarian cortex tissue from females with X chromosomal aberrations. The second method is directed at evaluating the effect of chromosomal aberrations on folliculogenesis by determining the X chromosomal content of ovarian cells of newly formed secondary and antral follicles in ovarian tissue, from females with X chromosomal aberrations after long-term grafting into immunocompromised mice. Both methods could be helpful in future research to gain insight into the reproductive potential of females with X chromosomal aberrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call