Abstract
Limited research has been conducted on the neural mechanisms of visuospatial attention in closed skill sports. This research aimed to delve into the unique visuospatial attention abilities of skaters and elucidate the underlying neural mechanisms. This cross-sectional study employed an expert-novice paradigm, applying a purely data-driven approach to analyze and compare the resting-state networks (RSNs) associated with visuospatial attention in 15 elite skaters and 15 control subjects. From the 38 components identified by independent component analysis (ICA) algorithm, five RSNs were selected, including the dorsal attention network (DAN), left and right fronto-parietal network (FPN), somatomotor network (SMN) and visual network (VIS). Elite skaters exhibited heightened functional connectivity (FC) in the right angular gyrus and left precuneus within DAN, left fusiform gyrus within left FPN, right primary motor cortex within right FPN, left supplementary motor area within SMN, and right primary visual cortex within VIS compared to the control group. Conversely, skaters demonstrated diminished FC in the bilateral superior temporal gyrus within DAN and right prefrontal cortex within the right FPN. Statistical results demonstrated significant differences in RSNs related to visuospatial functions in a wide range of brain regions between elite skaters and controls. We further speculate that these variances could be attributable to alterations in visuospatial abilities resulting from years of devoted skating training. The findings of this study offer novel perspectives on the neural reorganization linked to motor training, contributing to an enriched comprehension of the neuroplasticity changes inherent in prolonged engagement in motor skill development.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of sports medicine and physical fitness
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.