Abstract

Schistosomiasis caused by Schistosoma mekongi is one of the causative agents of human blood fluke infection in the lower Mekong River. Traditionally, the detection of egg morphology in stool samples has served as the prevailing method for diagnosing Schistosoma infection. Nonetheless, this approach exhibits low sensitivity, particularly in early infection detection. Urine has been extensively studied as a noninvasive clinical sample for diagnosing infectious diseases. Despite this, urine proteomic analysis of S. mekongi infection has been less investigated. This study aimed to characterize proteins and peptides present in mouse urine infected with S. mekongi both before infection and at intervals of 1, 2, 4, and 8 weeks post-infection using mass spectrometry-based proteomics. Proteomics analysis revealed 13 up- and only one down-regulated mouse protein consistently found across all time points. Additionally, two S. mekongi uncharacterized proteins were detected throughout the infection period. Using a peptidomics approach, we consistently identified two peptide sequences corresponding to S. mekongi collagen alpha-1(V) in mouse urine across all time points. These findings highlight the potential of these unique proteins, particularly the S. mekongi uncharacterized proteins and collagen alpha-1(V), as potential biomarkers for early detection of S. mekongi infection. Such insights could significantly advance diagnostic strategies for human Mekong schistosomiasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.